Data Science & Machine Learning -ARIMA Seasonality – DIY- 40 -of-50

Data Science & Machine Learning -ARIMA Seasonality – DIY- 40 -of-50
Do it yourself Tutorial
by
Bharati DW Consultancy
cell: +1-562-646-6746 (Cell & Whatsapp)
email: bharati.dwconsultancy@gmail.com
website:

Google Drive-

Hands On – R Machine Learning Ex-18
Use the Hour.csv Bike Sharing Dataset to create an Arima model.
Arima model should also have – Auto ARIMA, Seasonal as well as non-seasonal.

Citation Request:
Fanaee-T, Hadi, and Gama, Joao, ‘Event labeling combining ensemble detectors and background knowledge’,
Progress in Artificial Intelligence (2013): pp. 1-15, Springer Berlin Heidelberg, [Web Link]. @article year=2013, issn=2192-6352, journal=Progress in Artificial Intelligence, doi=10.1007/s13748-013-0040-3, title=Event labeling combining ensemble detectors and background knowledge, url=[Web Link], publisher=Springer Berlin Heidelberg, keywords=Event labeling; Event detection; Ensemble learning; Background knowledge, author=Fanaee-T, Hadi and Gama, Joao, pages=1-15 

Machine learning, data science, R programming, Deep Learning, Regression, Neural Network, R Data Structures, Data Frame, RMSE & R-Squared, Regression Trees, Decision Trees, Real-time scenario, KNN, C5.0 Decision Tree, Random Forest, Naive Bayes, Apriori